Two-Sample Instrumental Variables Estimators

نویسندگان

  • Atsushi Inoue
  • Gary Solon
چکیده

Following an influential article by Angrist and Krueger (1992) on two-sample instrumental variables (TSIV) estimation, numerous empirical researchers have applied a computationally convenient two-sample two-stage least squares (TS2SLS) variant of Angrist and Krueger’s estimator. In the two-sample context, unlike the single-sample situation, the IV and 2SLS estimators are numerically distinct. We derive and compare the asymptotic distributions of the two estimators and find that the commonly used TS2SLS estimator is more asymptotically efficient than the TSIV estimator. We also resolve some confusion in the literature about how to estimate standard errors for the TS2SLS estimator. Classification Number: C300 ∗Atsushi Inoue is Associate Professor, Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27695-8109 (email: [email protected]). Gary Solon is Professor, Department of Economics, Michigan State University, East Lansing, MI 488241038 (email: [email protected]). The authors are grateful for helpful comments from the editor, the referees, Joshua Angrist, and participants at the Hitotsubashi conference on economic statistics. Two-Sample Instrumental Variables Estimators

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaged Instrumental Variables Estimators

We develop averaged instrumental variables estimators as a way to deal with many weak instruments. We propose a weighted average of the preliminary k-class estimators, where each estimator is obtained using different subsets of the available instrumental variables. The averaged estimators are shown to be consistent and to satisfy asymptotic normality. Furthermore, its approximate mean squared e...

متن کامل

Control Function Instrumental Variable Estimation of Nonlinear Causal Effect Models

The instrumental variable method consistently estimates the effect of a treatment when there is unmeasured confounding and a valid instrumental variable. A valid instrumental variable is a variable that is independent of unmeasured confounders and affects the treatment but does not have a direct effect on the outcome beyond its effect on the treatment. Two commonly used estimators for using an ...

متن کامل

Location Properties of Point Estimators in Linear Instrumental Variables and Related Models∗

We examine statistical models, including the workhorse linear instrumental variables model, in which the mapping from the reduced form distribution to the structural parameters of interest is singular. The singularity of this mapping implies certain fundamental restrictions on the finite sample properties of point estimators: they cannot be unbiased, quantile-unbiased, or translation equivarian...

متن کامل

Shrinkage methods for instrumental variable estimation∗

This paper proposes shrinkage methods for instrumental variable estimation to solve the “many instruments” problem. Even though using a large number of instruments reduces the asymptotic variances of the estimators, it has been observed both in theoretical works and in practice that in finite samples the estimators may behave very poorly if the number of instruments is large. This problem can b...

متن کامل

Doubly Robust Instrumental Variable Regression

Instrumental variable (IV) estimation typically requires the user to correctly specify the relationship between the regressors and the outcome to obtain a consistent estimate of the effects of the treatments. This paper proposes doubly robust IV regression estimators that only require the user to either correctly specify the relationship between the measured confounding variables (i.e., include...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006